深度残差网络(Deep Residual Networks,简称ResNet)自从2015年首次提出以来,就在深度学习领域产生了深远影响。通过一种创新的“残差学习”机制,ResNet成功地训练了比以往模型更深的神经网络,从而显著提高了多个任务的性能。深度残差网络通过引入残差学习和特殊的网络结构,解决了传统深度神经网络中的梯度消失问题,并实现了高效、可扩展的深层模型。