在之前提到的全连接神经网络中,我们直接把一个比如说32 * 32 * 3的图像展开成一个3072*1的向量,然后使用向量与权重矩阵点积得到结果,这实际上是不太合理的,从某种意义上说,我们破坏了原本图像的空间信息,把它简单的看成一个一维向量,而在卷积神经网络中,我们引入了卷积层,能够帮助我们在保存原本图像的空间信息的情况下,对图像特征进行提取